
Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine

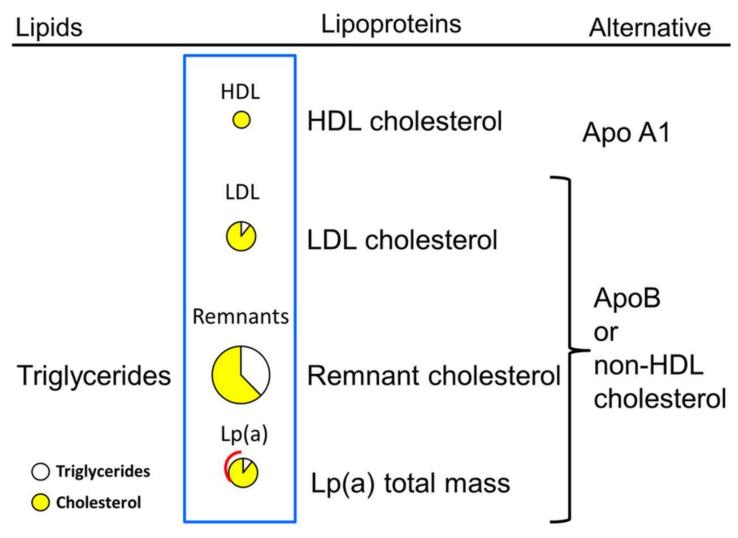
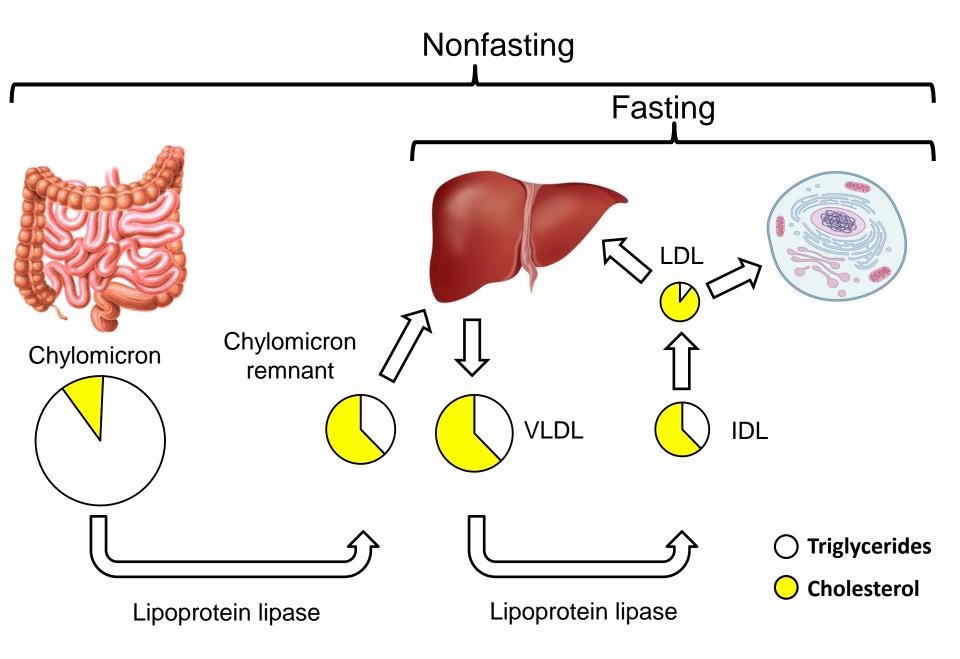

Børge G. Nordestgaard^{1*}, Anne Langsted¹, Samia Mora², Genovefa Kolovou³, Hannsjörg Baum⁴, Eric Bruckert⁵, Gerald F. Watts⁶, Grazyna Sypniewska⁷, Olov Wiklund⁸, Jan Borén⁸, M. John Chapman⁹, Christa Cobbaert¹⁰, Olivier S. Descamps¹¹, Arnold von Eckardstein¹², Pia R. Kamstrup¹, Kari Pulkki¹³, Florian Kronenberg¹⁴, Alan T. Remaley¹⁵, Nader Rifai¹⁶, Emilio Ros^{17,18}, and Michel Langlois^{19,20}, for the European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) joint consensus initiative

Table I Key recommendations

- Fasting is not required routinely for assessing the plasma lipid profile
- When non-fasting plasma triglyceride concentration >5 mmol/L (440 mg/dL), consideration should be given to repeating the lipid profile in the fasting state
- Laboratory reports should flag abnormal values based on desirable concentration cut-points
- Life-threatening or extremely high concentrations should trigger an immediate referral to a lipid clinic or to a physician with special interest in lipids

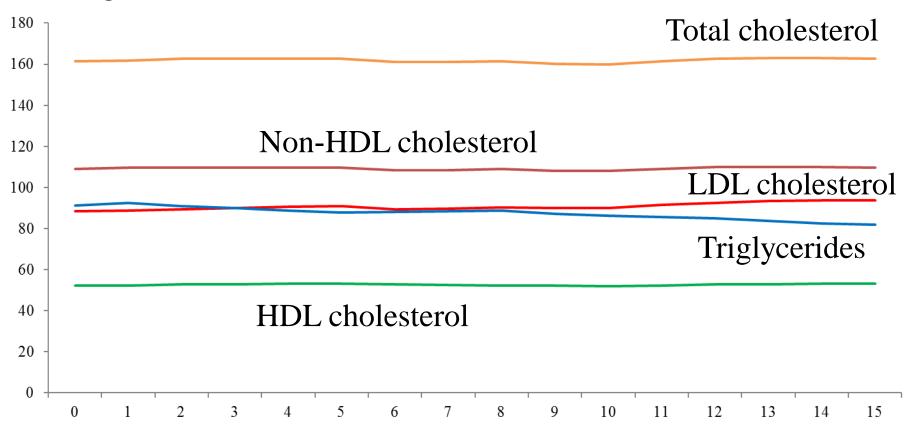


Lipids, lipoproteins, and apolipoproteins as part of standard and expanded lipid profiles.

Børge G. Nordestgaard et al. Eur Heart J 2016; eurheartj.ehw152

Table I Key recommendations

Fasting is not required routinely for assessing the plasma lipid profile

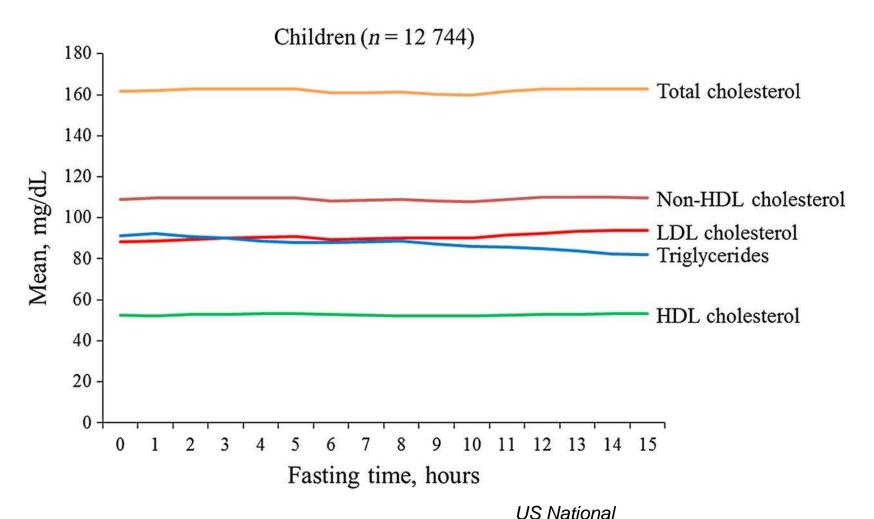

When non-fasting plasma triglyceride concentration >5 mmol/L (440 mg/dL), consideration should be given to repeating the lipid profile in the fasting state

Laboratory reports should flag abnormal values based on desirable concentration cut-points

Life-threatening or extremely high concentrations should trigger an immediate referral to a lipid clinic or to a physician with special interest in lipids

Children, N=12,744

Mean, mg/dL



US National Health and Nutrition Examination Survey

Fasting time, hours

Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26

Mean concentrations of lipids and lipoproteins as a function of the fasting period following the last meal in children from the US general population.

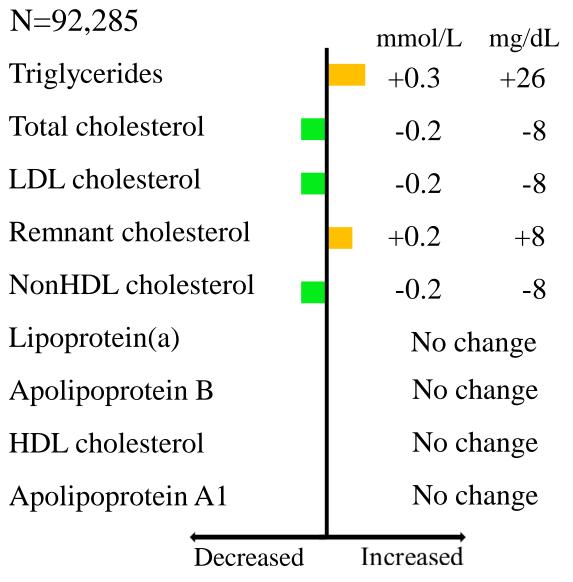


Børge G. Nordestgaard et al. Eur Heart J 2016;eurheartj.ehw152


Health and
Nutrition
Examination
Survey

© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

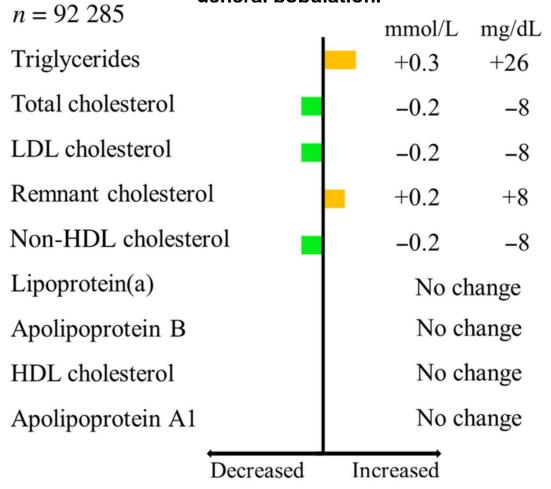
Mean concentrations of lipids and lipoproteins as a function of the period of fasting following the last meal in men and women from the Canadian general population.



Børge G. Nordestgaard et al. Eur Heart J 2016;eurheartj.ehw152

Calgary Laboratory Services in Canada

© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.


Copenhagen
General

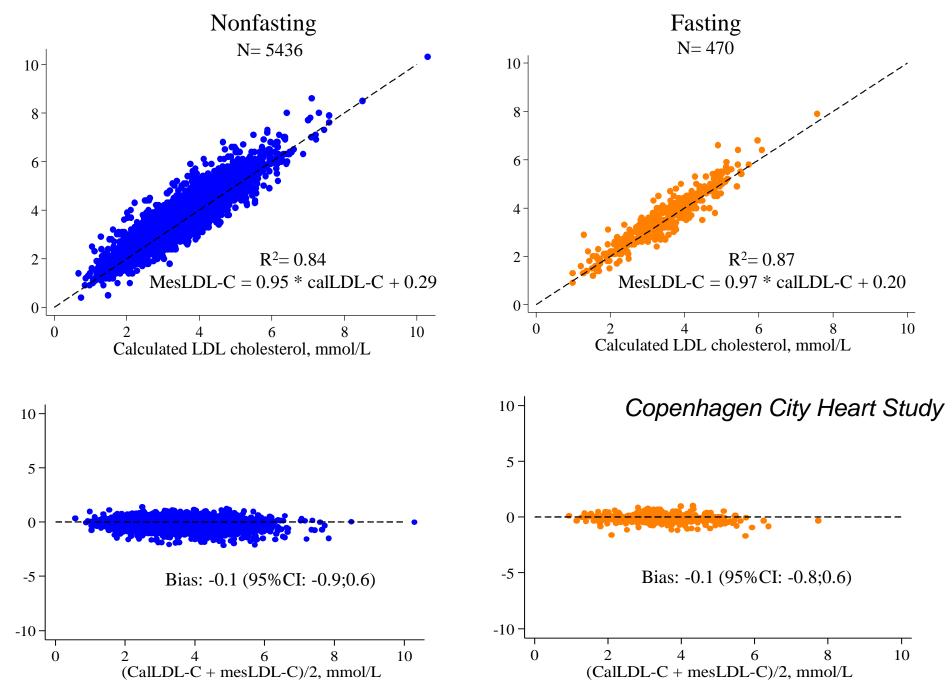
Maximal mean change after habitual food intake

Copenhagen General Population Study

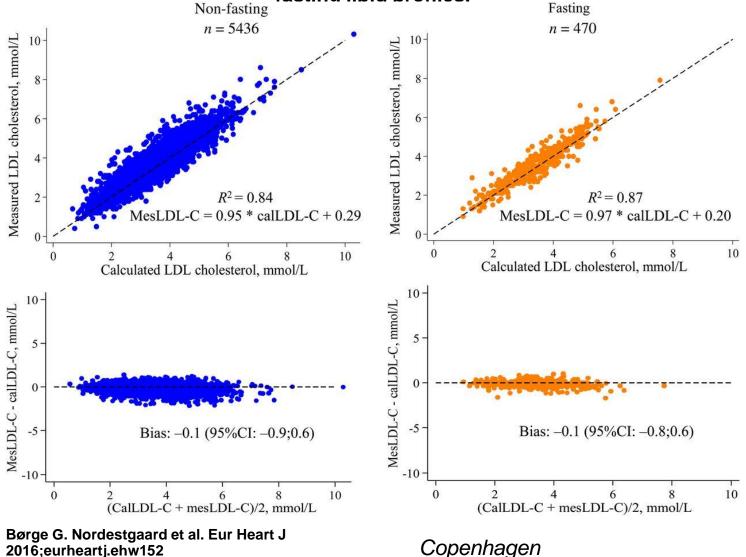
Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26

Maximal mean changes at 1–6 h after habitual food intake of lipids, lipoproteins, and apolipoproteins as part of standard and expanded lipid profiles in individuals in the Danish general population.

Maximal mean change after habitual food intake

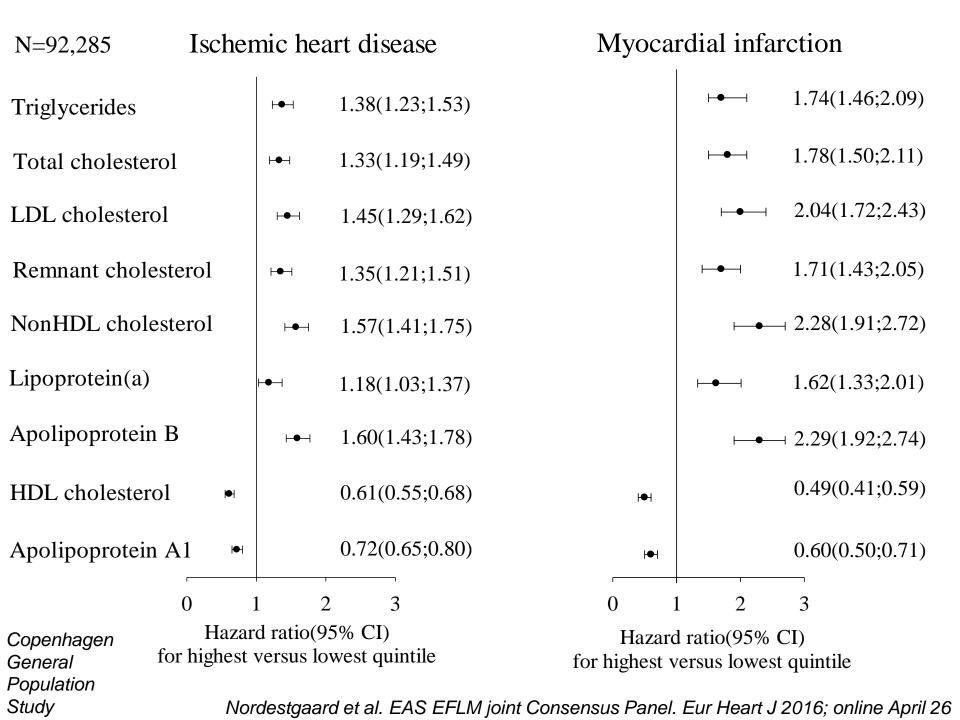

Børge G. Nordestgaard et al. Eur Heart J 2016;eurheartj.ehw152

Copenhagen General Population Study


Table 3 Maximal mean changes in lipids and lipoproteins at 1-6 h after consumption of habitual meals as part of a standard lipid profile in individuals in large-scale population-based studies and registries

	Study population	Random non-fasting compared with fasting concentrations				
		Triglycerides	Total cholesterol	LDL cholesterol	HDL cholesterol	
Mora et al. (2008) ⁴	26 330 women from the Women's Health Study	↑ 0.2 mmol/L ↑ 18 mg/dL ↑ 16%	↓ 0.1 mmol/L ↓ 4 mg/dL ↓ 1%	↓ 0.2 mmol/L ↓ 8 mg/dL ↓ 5%	No change	
Langsted et al. (2008) ³	33 391 men and women from the Copenhagen General Population Study	↑ 0.3 mmol/L ↑ 26 mg/dL ↑ 21%	↓ 0.2 mmol/L ^a ↓ 8 mg/dL ↓ 4%	\downarrow 0.2 mmol/L ^a \downarrow 8 mg/dL \downarrow 6%	↓ 0.1 mmol/L ↓ 4 mg/dL ↓ 6%	
Steiner et al. 2011 ³⁰	12 744 children from the National Health and Nutrition Examination Survey	↑ 0.1 mmol/L ↑ 9 mg/dL ↑ 10%	\downarrow 0.1 mmol/L \downarrow 4 mg/dL \downarrow 2%	\downarrow 0.1 mmol/L \downarrow 4 mg/dL \downarrow 4%	No change	
Langsted and Nordestgaard (2011) ⁹	2270 men and women with diabetes from the Copenhagen General Population Study	↑ 0.2 mmol/L ↑ 18 mg/dL ↑ 11%	\downarrow 0.4 mmol/L ^a \downarrow 15 mg/dL \downarrow 8%	↓ 0.6 mmol/L ^a ↓ 23 mg/dL ↓ 25% ^b	No change	
	56 164 men and women without diabetes from the Copenhagen General Population Study	↑ 0.2 mmol/L ↑ 18 mg/dL ↑ 14%	↓ 0.3 mmol/L ^a ↓ 12 mg/dL ↓ 5%	↓ 0.3 mmol/L ^a ↓ 12 mg/dL ↓ 9%	No change	
Sidhu and Naugler (2012) ²⁹	209 180 men and women from Calgary Laboratory Services	↑ 0.3 mmol/L ↑ 26 mg/dL ↑ 21%	No change	↓ 0.1 mmol/L ↓ 4 mg/dL ↓ 4%	No change	

Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26


Comparison of calculated low-density lipoprotein cholesterol using the Friedewald equation with low-density lipoprotein cholesterol measured directly using random non-fasting and fasting lipid profiles.

© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

Copenhagen City Heart Study

European Heart Journal

Risk of ischaemic heart disease and myocardial infarction for highest vs. lowest quintile of random non-fasting lipids, lipoproteins, and apolipoproteins as part of standard and expanded lipid profiles in individuals in the general population.

 $n = 92 \ 285$ Ischaemic heart disease Myocardial infarction 1.74(1.46;2.09) 1.38(1.23;1.53) **Triglycerides** \vdash 1.78(1.50;2.11) 1.33(1.19;1.49) \longrightarrow Total cholesterol 1 2.04(1.72;2.43) LDL cholesterol 1.45(1.29;1.62) -Remnant cholesterol 1.71(1.43;2.05) 1.35(1.21;1.51) -Non-HDL cholesterol - 2.28(1.91;2.72) 1.57(1.41;1.75) -Lipoprotein(a) 1.18(1.03;1.37) 1.62(1.33;2.01) Apolipoprotein B 1.60(1.43;1.78) - 2.29(1.92;2.74) +0.49(0.41;0.59)HDL cholesterol 0.61(0.55;0.68)101 0.72(0.65;0.80)Apolipoprotein A1 0.60(0.50;0.71)101 2 3 2 3 Hazard ratio(95% CI) Hazard ratio(95% CI)

Børge G. Nordestgaard et al. Eur Heart J 2016; eurheartj.ehw152

for highest vs. lowest quintile

Copenhagen General Population Study

for highest vs. lowest quintile

© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

Population-based studies totalling >300 000 non-fasting individuals	Statin trials totalling 43 000 non-fasting individuals
Tromsø Heart Study	Heart Protection Study
Norwegian National Health Service	Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm
British Population Studies	Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine
European Prospective Investigation of Cancer–Norfolk	
Northwick Park Heart Study	
Apolipoprotein-related Mortality Risk	
Copenhagen City Heart Study	
Women's Health Study	
Nurses' Health Study	
Physicians' Health Study	
National Health and Nutrition Examination Survey III	
Circulatory Risk in Communities Study	
Copenhagen General Population Study	
The global 52-country case-control INTERHEART study	

Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26

Patients	for	lipid	profile	testing
-----------------	-----	-------	---------	---------

Non-fasting

In most patients, including:

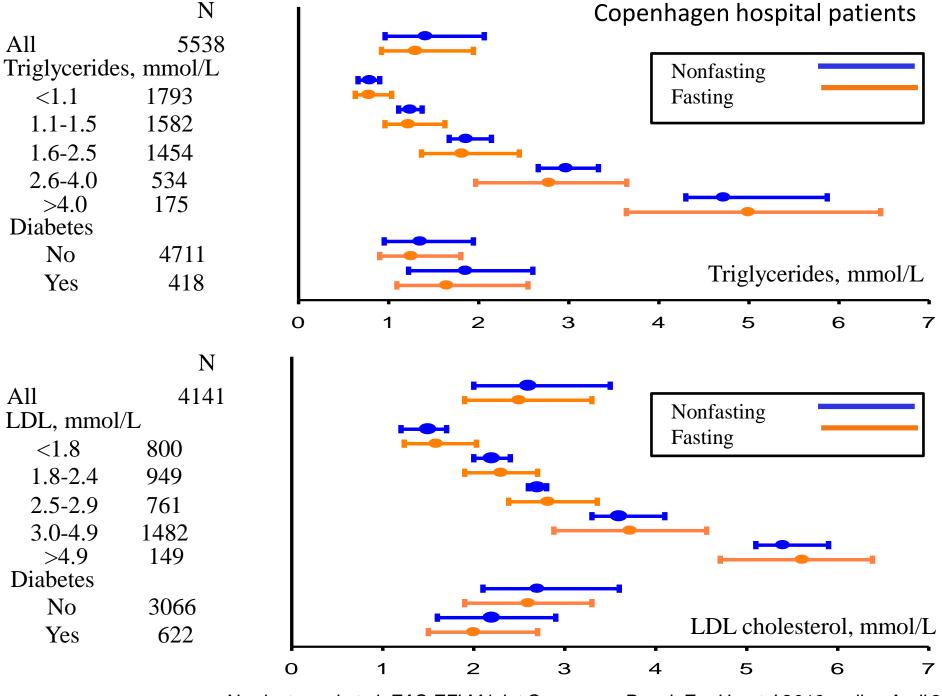
- Initial lipid profile testing in any patient
- For cardiovascular risk assessment
- Patients admitted with acute coronary syndrome^a
- In children
- If preferred by the patient
- In diabetic patients^b (due to hypoglycaemic risk)
- In the elderly
- Patients on stable drug therapy

Fasting

Can sometimes be required if:

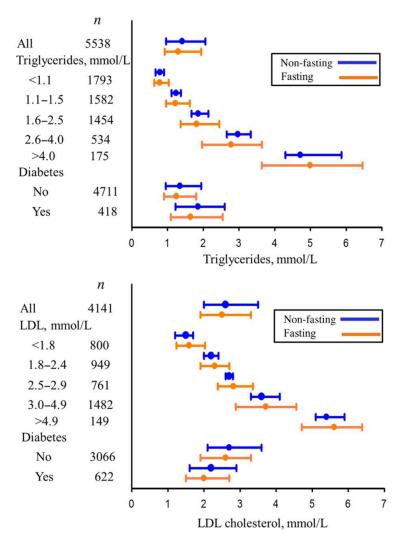
- Non-fasting triglycerides >5 mmol/L (440 mg/dL)
- Known hypertriglyceridaemia followed in lipid clinic
- Recovering from hypertriglyceridaemic pancreatitis
- Starting medications that cause severe hypertriglyceridaemia
- Additional laboratory tests are requested that require fasting^c or morning samples (e.g. fasting glucose^c, therapeutic drug monitoring)


Table I Key recommendations


Fasting is not required routinely for assessing the plasma lipid profile

When non-fasting plasma triglyceride concentration >5 mmol/L (440 mg/dL), consideration should be given to repeating the lipid profile in the fasting state

Laboratory reports should flag abnormal values based on desirable concentration cut-points

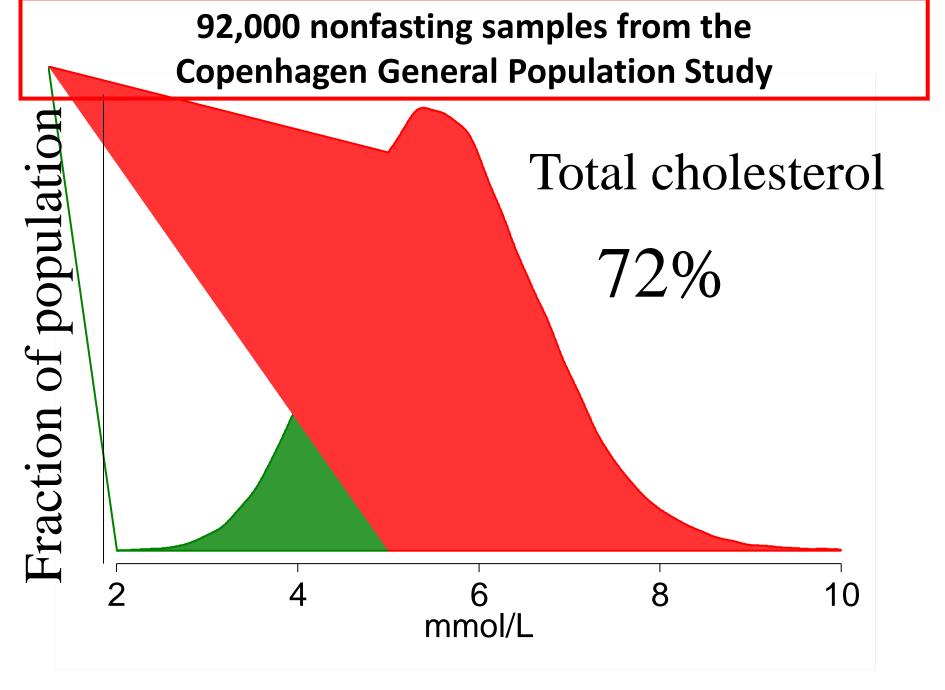

Life-threatening or extremely high concentrations should trigger an immediate referral to a lipid clinic or to a physician with special interest in lipids

Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26

Comparison of concentrations of plasma triglycerides and low-density lipoprotein cholesterol measured in the non-fasting and fasting states in the same patients.

Børge G. Nordestgaard et al. Eur Heart J 2016; eurheartj.ehw152

Copenhagen hospital patients


Table I Key recommendations

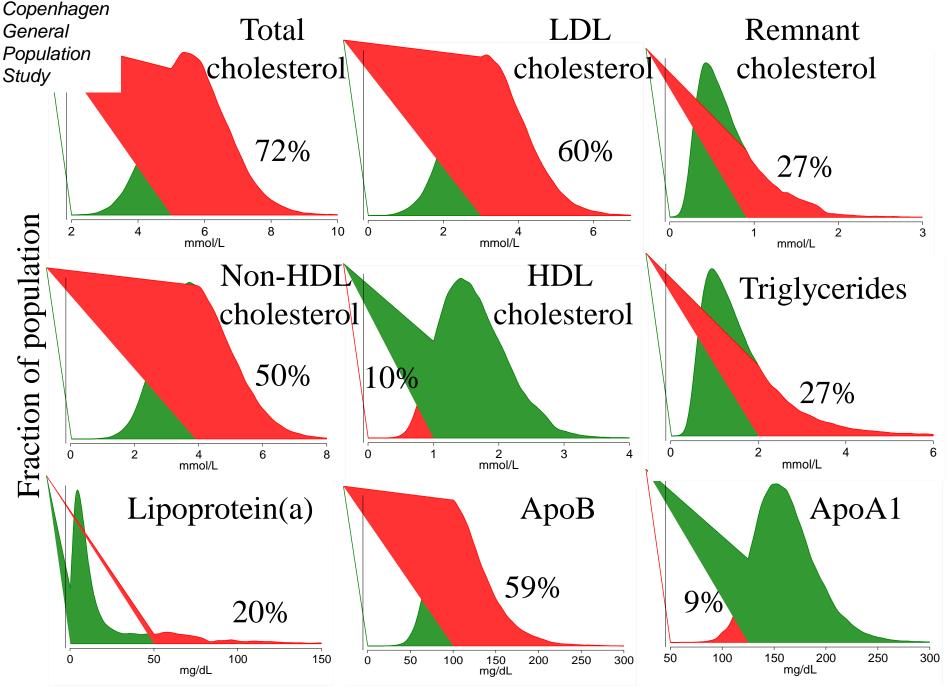
Fasting is not required routinely for assessing the plasma lipid profile

When non-fasting plasma triglyceride concentration >5 mmol/L (440 mg/dL), consideration should be given to repeating the lipid profile in the fasting state

Laboratory reports should flag abnormal values based on desirable concentration cut-points

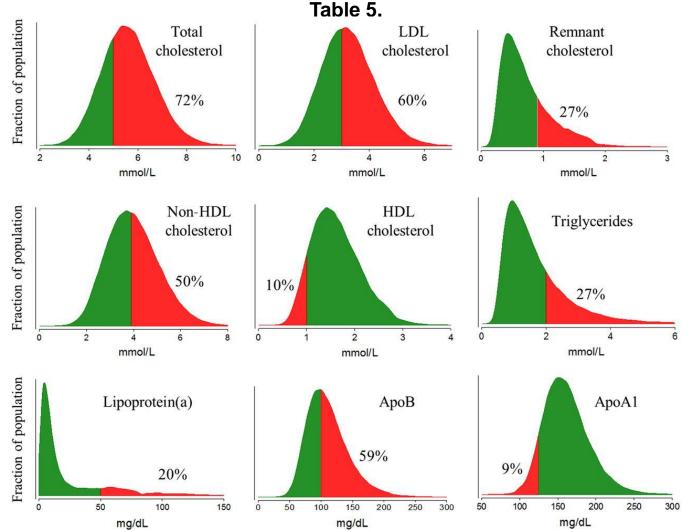
Life-threatening or extremely high concentrations should trigger an immediate referral to a lipid clinic or to a physician with special interest in lipids

Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26


S

Non-fasting

mmol/L	mg/dL ^a
≥2	≥175
\geq 5	\geq 190
≥3	≥115
≥ 0.9	≥35
≥ 3.9	≥150
е	\geq 50 f
	\geq 100
<u>≤</u> 1	≤40
	≤125
	≥2 ≥5 ≥3 ≥0.9 ≥3.9 e


Table 5 Abnormal plasma lipid, lipoprotein, and apolipoprotein concentration values that should be flagged in laboratory reports based on desirable concentration cut-points

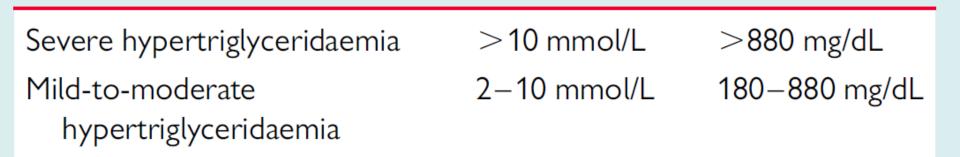
Abnormal concentrations	Non-fasting			Fasting		
	mmol/L	mg/dL ^a	g/ L	mmol/L	mg/dL ^a	g/L
Triglycerides ^b	≥2	≥175	≥1.75	≥1.7	≥150	≥1.50
Total cholesterol	≥5	≥190	≥1.90	≥5	≥190	≥ 1.90
LDL cholesterol	≥3	≥115	≥1.15	≥3	≥115	≥ 1.15
Remnant cholesterol ^c	≥0.9	≥35	≥0.35	≥0.8	≥30	≥0.30
Non-HDL cholesterol ^d	≥3.9	≥150	≥1.50	≥3.8	≥145	≥ 1.45
Lipoprotein(a)	е	\geq 50 ^f	≥0.50	e	\geq 50 ^f	≥0.50
Apolipoprotein B		≥100	≥1.00		≥100	≥1.00
HDL cholesterol ^g	<u>≤</u> 1	≤ 4 0	≤0.40	<u>≤</u> 1	≤40	≤0.40
Apolipoprotein A1		≤125	≤1.25		≤125	≤1.25

Nordestgaard et al. EAS EFLM joint Consensus Panel. Eur Heart J 2016; online April 26

Proportion of non-fasting individuals in the general population with flagged abnormal concentrations in laboratory reports using desirable concentration cut-points as shown in

Børge G. Nordestgaard et al. Eur Heart J 2016; eurheartj.ehw152

Copenhagen General Population Study



© The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

Table 6 Treatment goals for prevention of cardiovascular disease according to current European Atherosclerosis Society/European Society of Cardiology guidelines¹³

Cardiovascular disease risk	LDL cholesterol		Non-HDL cholesterol		Apolipoprotein B	
	mmo∜L	mg/dL	mmol/L	mg/dL	mg/dL	g/L
Very high	<1.8	<70	< 2.6	<100	<80	< 0.8
High	< 2.5	<100	< 3.3	<125	<100	<1.0
Moderate	< 3.0	<115	< 3.8	<145		

Table 7 Definition of hypertriglyceridaemia by European Atherosclerosis Society consensus statement²⁴

Table I Key recommendations

Fasting is not required routinely for assessing the plasma lipid profile

When non-fasting plasma triglyceride concentration >5 mmol/L (440 mg/dL), consideration should be given to repeating the lipid profile in the fasting state

Laboratory reports should flag abnormal values based on desirable concentration cut-points

Life-threatening or extremely high concentrations should trigger an immediate referral to a lipid clinic or to a physician with special interest in lipids

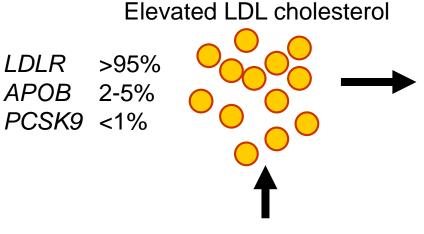
Separate referral to lipid specialist at

Life-threatening concentrations

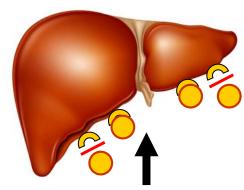
Triglycerides	>10 mmol/L >880 mg/dL ^a	Pancreatitis risk?
LDL cholesterol	>13 mmol/L >500 mg/dL ^a	HoFH?
LDL cholesterol	>5 mmol/L >190 mg/dL ^a	HeFH?
LDL cholesterol in children	>4 mmol/L >155 mg/dL ^a	HeFH?

Table 8 Life-threatening and extremely abnormal concentrations with separate reporting and consequent direct referral to a lipid clinic or to a physician with special interest in lipids

	Life-threatening concentrations	Refer patient to a lipid clinic or to a physician with special interest in lipids for further assessment of the following conditions
Triglycerides	>10 mmol/L >880 mg/dLª	Chylomicronaemia syndrome with high risk of acute pancreatitis ²⁴
LDL cholesterol	>13 mmol/L >500 mg/dL ^a	Homozygous familial hypercholesterolaemia with extremely high cardiovascular risk ⁴⁴
LDL cholesterol	>5 mmol/L >190 mg/dL ^a	Heterozygous familial hypercholesterolaemia with high cardiovascular risk ⁴³
LDL cholesterol in children	>4 mmol/L >155 mg/dL ^a	Heterozygous familial hypercholesterolaemia with high cardiovascular risk ⁴⁵
Lipoprotein(a)	>150 mg/dL >99th percentile	Very high cardiovascular risk, i.e for myocardial infarction and aortic valve stenosis 11,46,47
LDL cholesterol Apolipoprotein B	< 0.3 mmol/L $<$ 10 mg/dL	Genetic abetalipoproteinaemia
HDL cholesterol Apolipoprotein A1	<0.2 mmol/L <10 mg/dL	Genetic hypoalphalipoproteinaemia (e.g. lecithin cholesterol acyltransferase deficiency)

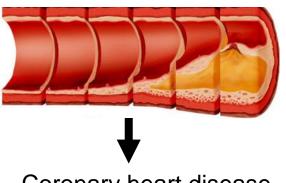

^aValues in mmol/L were converted to mg/dL by multiplication with 38.6 for cholesterol and by 88 for triglycerides, followed by rounding to nearest 5 mg/dL.

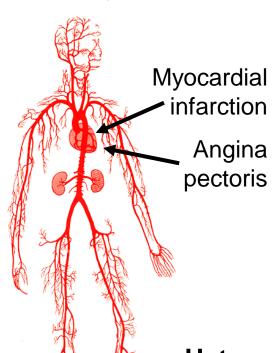
Nordestgaard 2015


Table 8 Life-threatening and extremely abnormal concentrations with separate reporting and consequent direct referral to a lipid clinic or to a physician with special interest in lipids

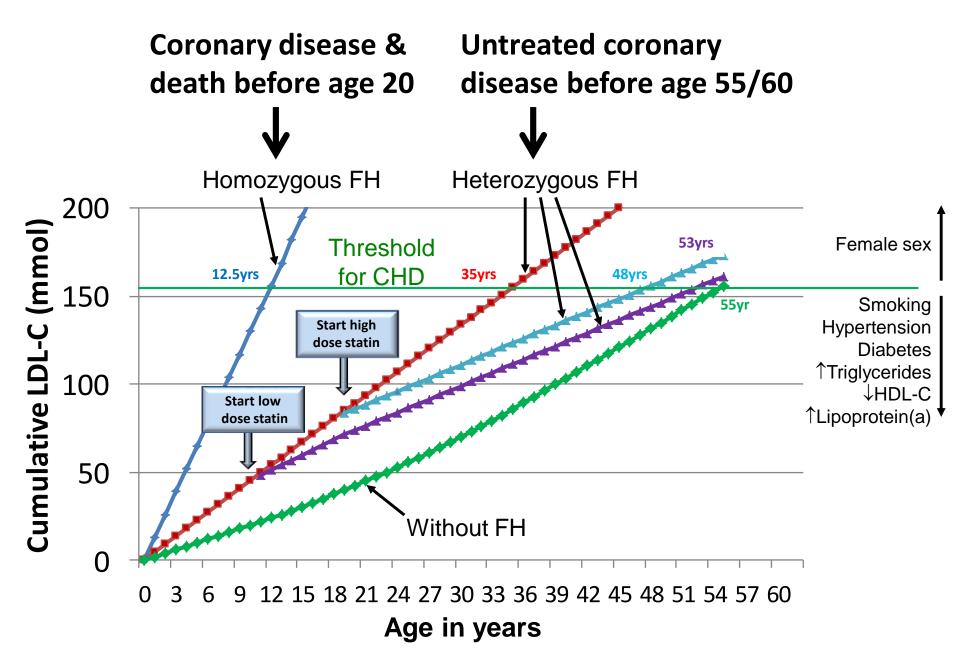
	Life-threatening concentrations	Refer patient to a lipid clinic or to a physician with special interest in lipids for further assessment of the following conditions
Triglycerides	>10 mmol/L >880 mg/dLª	Chylomicronaemia syndrome with high risk of acute pancreatitis ²⁴
LDL cholesterol	$>$ 13 mmol/L $>$ 500 mg/dL $^{\rm a}$	Homozygous familial hypercholesterolaemia with extremely high cardiovascular risk ⁴⁴
LDL cholesterol	>5 mmol/L >190 mg/dL ^a	Heterozygous familial hypercholesterolaemia with high cardiovascular risk ⁴³
LDL cholesterol in children	>4 mmol/L >155 mg/dL ^a	Heterozygous familial hypercholesterolaemia with high cardiovascular risk ⁴⁵
Lipoprotein(a)	>150 mg/dL >99th percentile	Very high cardiovascular risk, i.e for myocardial infarction and aortic valve stenosis 11,46,47
LDL cholesterol Apolipoprotein B	< 0.3 mmol/L < 10 mg/dL	Genetic abetalipoproteinaemia
HDL cholesterol Apolipoprotein A1	< 0.2 mmol/L $<$ 10 mg/dL	Genetic hypoalphalipoproteinaemia (e.g. lecithin cholesterol acyltransferase deficiency)

^aValues in mmol/L were converted to mg/dL by multiplication with 38.6 for cholesterol and by 88 for triglycerides, followed by rounding to nearest 5 mg/dL.


Liver with only 50% functional LDL receptors


Mutations in LDL receptor, apolipoproteinB or PCSK9

Atherosclerosis

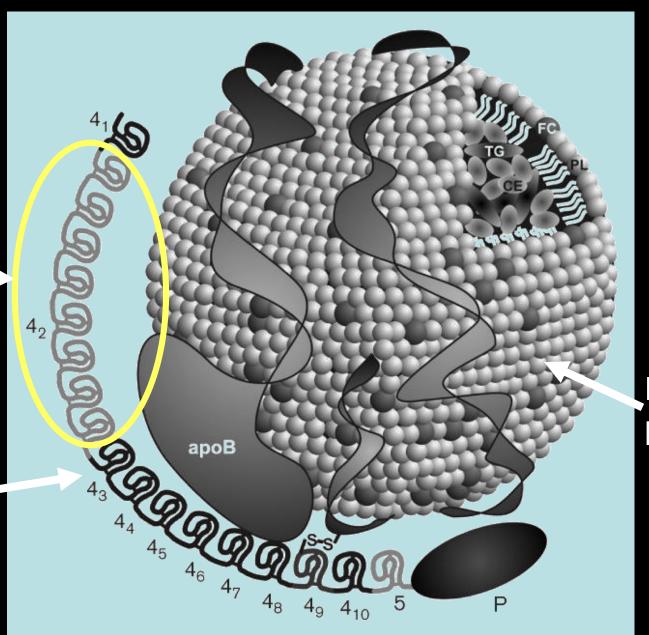


Coronary heart disease

Heterozygous familial hypercholesterolaemia

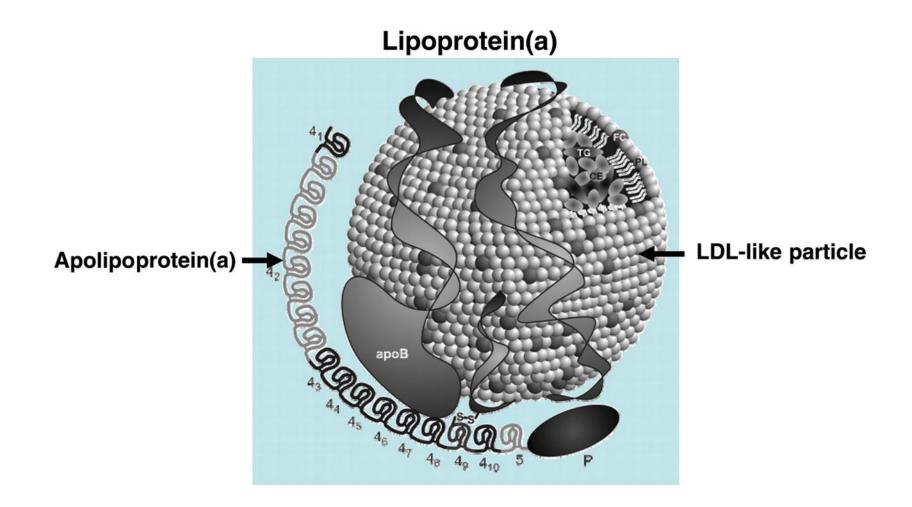
Nordestgaard et al. EAS Consensus. Eur Heart J 2013; 34: 3478-90 (open access)

Nordestgaard et al. EAS Consensus. Eur Heart J 2013; 34: 3478-90 (open access)


Table 8 Life-threatening and extremely abnormal concentrations with separate reporting and consequent direct referral to a lipid clinic or to a physician with special interest in lipids

	Life-threatening concentrations	Refer patient to a lipid clinic or to a physician with special interest in lipids for further assessment of the following conditions
Triglycerides	>10 mmol/L >880 mg/dLª	Chylomicronaemia syndrome with high risk of acute pancreatitis ²⁴
LDL cholesterol	>13 mmol/L >500 mg/dL ^a	Homozygous familial hypercholesterolaemia with extremely high cardiovascular risk ⁴⁴
LDL cholesterol	>5 mmol/L >190 mg/dL ^a	Heterozygous familial hypercholesterolaemia with high cardiovascular risk ⁴³
LDL cholesterol in children	>4 mmol/L >155 mg/dL ^a	Heterozygous familial hypercholesterolaemia with high cardiovascular risk ⁴⁵
Lipoprotein(a)	>150 mg/dL >99th percentile	Very high cardiovascular risk, i.e for myocardial infarction and aortic valve stenosis 11,46,47
LDL cholesterol Apolipoprotein B	< 0.3 mmol/L $<$ 10 mg/dL	Genetic abetalipoproteinaemia
HDL cholesterol Apolipoprotein A1	< 0.2 mmol/L < 10 mg/dL	Genetic hypoalphalipoproteinaemia (e.g. lecithin cholesterol acyltransferase deficiency)

^aValues in mmol/L were converted to mg/dL by multiplication with 38.6 for cholesterol and by 88 for triglycerides, followed by rounding to nearest 5 mg/dL.

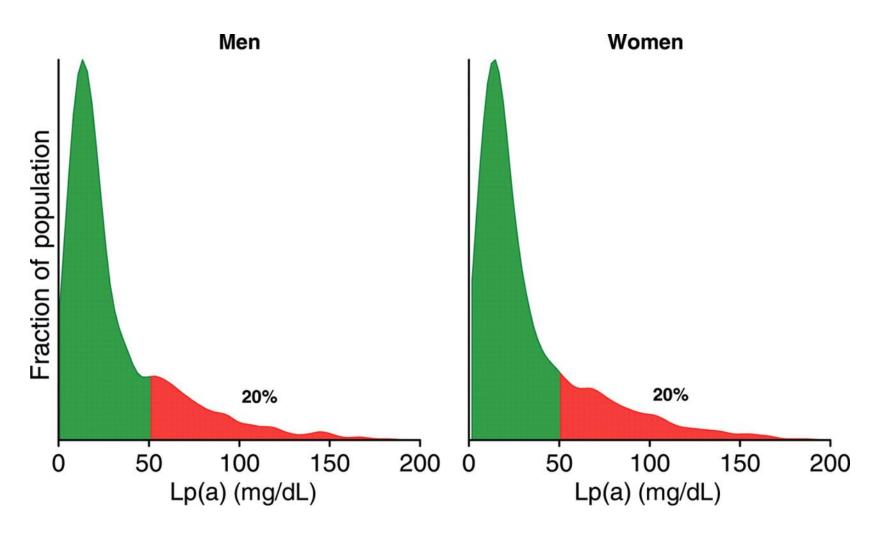

Lipoprotein(a)

apolipoprotein(a)

LDL-like particle


Lipoprotein(a) consists of an LDL-like particle to which apolipoprotein(a) is covalently linked.

Nordestgaard B G et al. Eur Heart J 2010;31:2844-2853



Copenhagen General Population Study

Nordestgaard 2010

Typical distributions of lipoprotein(a) levels in the general population.

Nordestgaard B G et al. Eur Heart J 2010;31:2844-2853

Copenhagen General Population Study

Nonfasting lipid profiles

Laboratory reporting on abnormal concentrations

Key university hospitals start using nonfasting lipid profiles

National societies for cardiology, endocrinology, atheroslerosis, pediatrics, clinical chemistry, general practice and others adapt nonfasting lipid profiles

Journalists at key medias are invited to bring the story that fasting is no longer routinely required for lipid profile testing

Clinical chemistry laboratories no longer require fasting before lipid profile testing

Key university hospitals start using desirable concentration cut-points to indicate abnormal concentrations as in Table 4

National societies for clinical chemistry, cardiology, endocrinology, atheroslerosis, pediatrics, general practice and other adapt desirable concentration cut-points

Clinical chemistry laboratories use desirable concentration cut-points for lipid profile testing

National societies enforce strategy

Suggested implementation strategies in individual countries, states, and/or provinces for use of non-fasting lipid profiles and for flagging in laboratory reports of abnormal values based on desirable concentration cut-points.

Implementation strategies in individual countries, states, and provinces for

Non-fasting lipid profiles

Laboratory reporting on abnormal concentrations

Key university hospitals start using non-fasting lipid profiles

National societies for cardiology, endocrinology, atheroslerosis, pediatrics, clinical chemistry, general practice, and others adapt non-fasting lipid profiles

Journalists at key medias are invited to bring the story that fasting is no longer routinely required for lipid profile testing

Clinical chemistry laboratories no longer require fasting before lipid profile testing

Key university hospitals start using desirable concentration cut-points to indicate abnormal concentrations as in Table 5

National societies for clinical chemistry, cardiology, endocrinology, atheroslerosis, pediatrics, general practice, and others adapt desirable concentration cut-points

Clinical chemistry laboratories use desirable concentration cut-points for lipid profile testing

National societies enforce strategy

Børge G. Nordestgaard et al. Eur Heart J 2016; eurheart j.ehw152

Disclosures

Supported by unrestricted educational grants to EAS and EFLM from Merck, Roche Diagnostics, and Denka Seiken. These companies were not present at the Joint Consensus Panel meetings, had no role in the design or content of the joint consensus statement, and had no right to approve or disapprove of the final document. Funding to pay the Open Access publication charges for this article was provided by the European Atherosclerosis Society and the European Federation of Clinical Chemistry and Laboratory Medicine.